Epoch AI预言:最快1年内,推理模型步伐将放缓
故渊| IT之家 | 2025-05-14
【流媒体网】摘要:Epoch AI报告揭示AI推理模型面临计算与成本双重天花板。

  非营利 AI 研究机构 Epoch AI 最新发布报告,指出 AI 企业难以从推理模型中,持续榨取巨大性能收益,最快在一年内,推理模型的进步将放缓。

  报告基于公开数据和假设,强调了计算资源的限制和研究开销的增加。AI 行业长期依赖这些模型来提升基准表现,但这种依赖性正面临挑战。

  该机构分析师 Josh You 指出推理模型的兴起,源于其在特定任务上的出色表现。例如,OpenAI 的 o3 模型在最近几个月里,主要提升数学和编程技能。

  而这些推理模型通过增加计算资源来解决问题,从而提升性能,不过作为代价,这些推理模型需要更多计算来处理复杂任务,因此比传统模型耗时更长。

  注:推理模型的训练过程先是基于海量数据训练一个常规模型,然后应用强化学习技术。该技术像给模型提供“反馈”一样,帮助它优化对难题的解决方案。这种方法推动了 AI 的快速迭代,但也暴露了潜在的瓶颈。

  OpenAI 等前沿 AI 实验室正加大对强化学习的投资。公司表示,在训练 o3 时,使用了约 10 倍于前代 o1 的计算资源,大部分用于强化学习阶段。研究者 Dan Roberts 透露,OpenAI 的未来计划将优先强化学习,并投入更多计算力,甚至超过初始模型训练的水平。

  这种策略加速了模型的改进,但 Epoch 的分析提醒,这种改进并非没有上限,计算资源的增加会遇到物理和经济约束。

  Josh You 在分析中详细解释了性能增长的差异。标准 AI 模型训练的性能目前每年翻番,而强化学习的性能每 3-5 个月增长十倍。这种快速增长可能到 2026 年与整体 AI 前沿进展趋同。

  他强调,推理模型的规模化面临不止计算问题,还包括高研究开销:“如果研究需要持续的高开销,推理模型可能无法达到预期规模”。


  由流媒体网主办的「中原论道暨第29届智能视听与科技创新产业论坛」将以“新局新视 智合聚变”为主题,再度携手产业各方,共启视听新局,共创智屏新篇。

  5月22-23日,河南开封·大河希尔顿逸林酒店,「中原论道」邀您共聚。

责任编辑:李楠

分享到:
版权声明:凡注明来源“流媒体网”的文章,版权均属流媒体网所有,转载需注明出处。非本站出处的文章为转载,观点供业内参考,不代表本站观点。文中图片均来源于网络收集整理,仅供学习交流,版权归原作者所有。如涉及侵权,请及时联系我们删除!